If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+15y-176=0
a = 1; b = 15; c = -176;
Δ = b2-4ac
Δ = 152-4·1·(-176)
Δ = 929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{929}}{2*1}=\frac{-15-\sqrt{929}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{929}}{2*1}=\frac{-15+\sqrt{929}}{2} $
| t/2–8=–12 | | u-14=28 | | t2–8=–12 | | 2(4a+2)=+5(5+2a) | | 9c=-4 | | 4x–8=10–2x | | 1/3(31-3x)=1/2(-4x) | | 4x-31+2x+1=180 | | y+15y-176=0 | | -2(m-2)+4(m-8)=-67 | | u–14=28 | | 1.9y+6=3.1y | | -10s-(-17s)+14s+(-7s)+(-17s)+(-10)=-19 | | 5=7b=19 | | -3b+-2=-8b+43 | | 23.4+x=5.67 | | –17r−10r+–13=14 | | -4a-8=7a-52 | | 13r-6r-5r-1=11 | | 20—8x=16—3x—11 | | 3(6X+8)-2=-1/2x(-16x-20)-2x | | 2g+(-11g)-g-(-7)=-13 | | -9j+12=-5j | | 9y+15y-6y-20y=12 | | 5x+18x=60 | | 0=-1(x+10)–8(4x+7 | | -x-3x+13x-2x+(-8x)=14 | | 2(p+5)=4p | | 8m+4m+9-3=6m+6m+7-1 | | -20=5b-2+7 | | x-7=-3(x+1)/3 | | 2(p+5)=7p |